Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 784-791, 2023.
Article in Chinese | WPRIM | ID: wpr-988724

ABSTRACT

ObjectiveThis study aimed to investigate the effects of eugenol on inhibiting the inflammatory activation of human umbilical cord mesenchymal stem cells (HUC-MSCs) and the pro-inflammatory phenotype of hepatic stellate cells (HSCs) in liver fibrosis, and to explore their underlying mechanisms. MethodsHUC-MSCs were cultured and identified in vitro, and the toxicity of eugenol to HUC-MSCs was evaluated by MTT method. The effect of eugenol on the migration ability of HUC-MSCs was investigated by in vitro scratch test. The expression of α-SMA, COL1A1, Smad2/3 and p-Smad2/3 of LX-2 cells activated by TGF-β1 treated with EU-MSCs-CM and MSCs-CM were detected by WB assay. EU-MSCs-CM and MSCs-CM treated THP-1 macrophages stimulated with Lipopolysaccharide (LPS) were analyzed for the expression of surface markers CD11b, CD86, and CD206 by flow cytometry. Additionally, the expression of pro-inflammatory genes TNF-α, IL-1β, and IL-6 in THP-1 macrophages was detected by qPCR. ResultsThe results of MTT method showed that the viability of the cells remained above 90% after 24 h and 48 h treatment at 0, 7.5, 15 μg/mL. In vitro scratches showed that eugenol treatment enhanced HUC-MSCs migration. WB results showed that compared with MSCs-CM treatment, EU-MSCs-CM treatment significantly inhibited the expression of α-SMA, COL1A1, Smad2/3, and p-Smad2/3 of activated HSCs. Flow cytometry showed that compared with MSCs-CM treatment, EU-MSCs-CM treatment had a more significant inhibitory effect on CD86, a M1-type polarization marker in THP-1 macrophages. The results of qPCR experiment showed that compared with MSCs-CM treatment, EU-MSCs-CM treatment more significantly inhibited the expressions of TNF-α, IL-1β and IL-6 of THP-1 macrophage proinflammatory genes. ConclusionsEugenol enhances the inhibitory effect of HUC-MSCs on inflammatory activation of HSCs, possibly by regulating TGF-β1/Smads signaling pathway. It also enhances the inhibitory effect of HUC-MSCs on the pro-inflammatory phenotype of macrophages. Proinflammatory macrophages can promote inflammatory activation of HSCs.

2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 540-550, 2023.
Article in English | WPRIM | ID: wpr-982723

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons in the brain and spinal cord. One important aspect of ALS pathogenesis is superoxide dismutase 1 (SOD1) mutant-mediated mitochondrial toxicity, leading to apoptosis in neurons. This study aimed to evaluate the neural protective synergistic effects of ginsenosides Rg1 (G-Rg1) and conditioned medium (CM) on a mutational SOD1 cell model, and to explore the underlying mechanisms. We found that the contents of nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor significantly increased in CM after human umbilical cord mesenchymal stem cells (hUCMSCs) were exposed to neuron differentiation reagents for seven days. CM or G-Rg1 decreased the apoptotic rate of SOD1G93A-NSC34 cells to a certain extent, but their combination brought about the least apoptosis, compared with CM or G-Rg1 alone. Further research showed that the anti-apoptotic protein Bcl-2 was upregulated in all the treatment groups. Proteins associated with mitochondrial apoptotic pathways, such as Bax, caspase 9 (Cas-9), and cytochrome c (Cyt c), were downregulated. Furthermore, CM or G-Rg1 also inhibited the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the phosphorylation of p65 and IκBα. CM/G-Rg1 or their combination also reduced the apoptotic rate induced by betulinic acid (BetA), an agonist of the NF-κB signaling pathway. In summary, the combination of CM and G-Rg1 effectively reduced the apoptosis of SOD1G93A-NSC34 cells through suppressing the NF-κB/Bcl-2 signaling pathway (Fig. 1 is a graphical representation of the abstract).


Subject(s)
Humans , NF-kappa B/metabolism , Ginsenosides/pharmacology , Amyotrophic Lateral Sclerosis/genetics , Culture Media, Conditioned/pharmacology , Superoxide Dismutase-1 , Neurodegenerative Diseases , Neurons/metabolism , Apoptosis
3.
Clinics ; 78: 100181, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439899

ABSTRACT

Abstract Objectives: This study aimed to explore the effects of bone marrow-derived Mesenchymal Stem Cell-Conditioned Medium (MSC-CM) treating diabetic foot ulcers in rats. Methods: Models of T2DM rats were induced by a high-fat diet and intraperitoneal injection of STZ in SD rats. Models of Diabetic Foot Ulcers (DFUs) were made by operation on hind limbs in diabetic rats. Rats were divided into four groups (n = 6 for each group), i.e., Normal Control group (NC), Diabetes Control group (DM-C), MSC-CM group and Mesenchymal Stem Cells group (MSCs). MSC-CM group was treated with an injection of conditioned medium derived from preconditioned rats' bone marrow MSCs around ulcers. MSCs group were treated with an injection of rats' bone marrow MSCs. The other two groups were treated with an injection of PBS. After the treatment, wound closure, re-epithelialization (thickness of the stratum granulosums of the skin, by H&E staining), cell proliferation (Ki67, by IHC), angiogenesis (CD31, by IFC), autophagy (LC3B, by IFC and WB; autoly-sosome, by EM) and pyroptosis (IL-1β, NLRP3, Caspase-1, GSDMD and GSDMD-N, by WB) in ulcers were evaluated. Results: After the treatment wound area rate, IL-1β by ELISA, and IL-1β, Caspase-1, GSDMD and GSDMD-N by WB of MSC-CM group were less than those of DM group. The thickness of the stratum granulosums of the skin, proliferation index of Ki67, mean optic density of CD31 and LC3B by IFC, and LC3B by WB of MSC-CM group were more than those of DM group. The present analysis demonstrated that the injection of MSC-CM into rats with DFUs enhanced the wound-healing process by accelerating wound closure, promoting cell proliferation and angiogenesis, enhancing cell autophagy, and reducing cell pyroptosis in ulcers. Conclusions: Studies conducted indicate that MSC-CM administration could be a novel cell-free therapeutic approach to treat DFUs accelerating the wound healing process and avoiding the risk of living cells therapy.

4.
Chinese Critical Care Medicine ; (12): 43-50, 2023.
Article in Chinese | WPRIM | ID: wpr-991976

ABSTRACT

Objective:To investigate and compare the regulatory effects of umbilical cord mesenchymal stem cells (MSC) and their conditioned medium (MSC-CM) on gut microbiota of septic mice.Methods:Twenty-eight six-to-eight-week-old female C57BL/6J mice were randomly divided into sham operation group (Sham group), sepsis model group (CLP group), sepsis+MSC treatment group (CLP+MSC group) and sepsis+MSC-CM treatment group (CLP+MSC-CM group), with seven mice in each group. The septic mouse model was established by cecal ligation and puncture (CLP). In Sham group, CLP were not performed, and other operations were the same as CLP group. Mice in the CLP+MSC group and CLP+MSC-CM group received 0.2 mL 1×10 6 MSC or 0.2 mL concentrated MSC-CM via intraperitoneal injection 6 hours after CLP, respectively. Sham group and CLP group were given 0.2 mL sterile phosphate buffer saline (PBS) via intraperitoneal injection. Histopathological changes were evaluated by hematoxylin-eosin (HE) staining and colon length. Levels of inflammatory factors in serum were detected by enzyme-linked immunosorbent assay (ELISA). Phenotype of peritoneal macrophages was analyzed by flow cytometry, and the gut microbiota was analyzed via 16S rRNA sequencing. Results:Compared with Sham group, significant inflammatory injury in lung and colon was observed, and shorter colon was detected in CLP group (cm: 6.00±0.26 vs. 7.11±0.09), the level of inflammatory cytokine interleukin-1β (IL-1β) in serum was significantly increased (ng/L: 432.70±17.68 vs. 353.70±17.01), the proportion of F4/80 + peritoneal macrophages was increased [(68.25±3.41)% vs. (50.84±4.98)%], while the ratio of F4/80 +CD206 + anti-inflammatory peritoneal macrophages was decreased [(45.25±6.75)% vs. (66.66±3.36)%]. The α diversity sobs index of gut microbiota was downregulated significantly (118.50±23.25 vs. 255.70±6.87), the structure of species composition was altered, and the relative abundance of functional gut microbiota related to transcription, secondary metabolites biosynthesis, transport and catabolism, carbohydrate transport and metabolism, and signal transduction were decreased significantly in CLP group (all P < 0.05). Compared with CLP group, upon MSC or MSC-CM treatment, the pathological injury in lung and colon was alleviated to varying extent, the length of colon was increased (cm: 6.53±0.27, 6.87±0.18 vs. 6.00±0.26), the level of IL-1β in serum was downregulated (ng/L: 382.10±16.93, 343.20±23.61 vs. 432.70±17.68), the ratio of F4/80 + peritoneal macrophages was decreased [(47.65±3.93)%, (48.68±2.51)% vs. (68.25±3.41)%], the ratio of F4/80 +CD206 + anti-inflammatory peritoneal macrophages was increased [(52.73±5.02)%, (66.38±4.73)% vs. (45.25±6.75)%], and the α diversity sobs index of gut microbiota was increased (182.50±16.35, 214.00±31.18 vs. 118.50±23.25), and the effects of MSC-CM were more significant (all P < 0.05). At the same time, species composition of gut microbiota was rebuilt, and a tendency of increase in relative abundance of functional gut microbiota was observed upon MSC and MSC-CM treatment. Conclusion:Both MSC and MSC-CM could alleviate inflammatory injury in tissues, and showed regulatory effects on gut microbiota in septic mouse model, moreover, MSC-CM exhibited superior advantages over MSC.

5.
Biol. Res ; 55: 11-11, 2022. ilus
Article in English | LILACS | ID: biblio-1383903

ABSTRACT

BACKGROUND: Functional bioengineered tooth regeneration using autologous or allogeneic alternative differentiated cells sources are thought to have a great potential in replacing conventional dentures. This study investigated the potential of dental pulp stem cells (DPSCs) conditioned medium for odontoblastic differentiation of Wharton's jelly mesenchymal stem cells (WJMSCs). The DPSCs derived from healthy adult permanent first molars were cultured at high confluence prior to conditioned medium collection. The WJMSCs were cultured in six different treatments, with varying ratios of culture media to DPSCs-conditioned medium. MTT assay was used to measure the rate of proliferation of WJMSCs, while immunocytochemistry staining was utilised to detect the expression of dental matrix protein 1 (DMP-1). The deposited calcium was detected and analysed via Alizarin-Red Staining (ARS). RESULTS: It was found that the proliferation of WJMSCs cultured under the mixture of complete medium and DPSCs conditioned medium showed significantly lower than the control; presumably the cells started to exit proliferative state prior differentiation. In 14 days of induction, the cells in all treatments showed osteoblastic-like morphology, calcium compound deposits were observed at day 7, 10 and 14 of differentiation suggested that DPSCs conditioned medium could lead to osteoblastic/odontoblastic differentiation. However, the DMP-1 protein can be seen only expressed minimally at day 14 of conditioned medium induction. CONCLUSIONS: In conclusion, DPSCs conditioned medium appeared as a potential odontoblastic induction approach for WJMSCs. To further investigate the stimulatory effects by DPSCs conditioned medium, specific signalling pathway need to be elucidated to enhance the differentiation efficiency.


Subject(s)
Stem Cells , Dental Pulp , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Cell Proliferation
6.
Malaysian Journal of Medicine and Health Sciences ; : 353-355, 2022.
Article in English | WPRIM | ID: wpr-980133

ABSTRACT

@#A 44-years-old woman with hard and thick keloids after chronic mercury burn injury underwent a several times of reconstructive surgery. The patient had excised surgery and injected Umbilical Cord-derived Mesenchymal Stem Cells (UC-MSCs) and Umbilical Cord Mesenchymal Stem Cells-derived Condtioned Medium (UCMSC-CM) 9 times within 9 months. Seven times injection of UC-MSCs of 5x106 cells and UCMSC-CM of 20 cc 2 times at months 4 and 9. The results of this therapy showed gradual improvement without any side effects and the size of the keloid reduced from 25x16 cm to 23x14 cm after 9 months. Keloid thickness from 12 mm to 4 mm. Keloid color becomes lighter and skin texture is more supple and soft. The cases showed that UC-MSCs and UCMSC-CM can be a potential treatment for keloids after chronic burn either alone or in combination with surgery.

7.
Chinese Journal of Emergency Medicine ; (12): 636-643, 2022.
Article in Chinese | WPRIM | ID: wpr-930254

ABSTRACT

Objective:To investigate the protective effect of human umbilical cord mesenchymal stem cell conditioned medium (HucMSC-cm) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and relevant mechanism of action.Methods:Forty 6-week-old male C57BL/6 mice were selected and randomized (random number) into the sham group, LPS group, LPS + HucMSC-cm (LPS+cm) group, and LPS+HucMSC-cm+Compound C (LPS+cm+cc) group, with 10 mice in each group. Mice were intratracheally injected with LPS (5 mg/kg) to establish ALI model, and intratracheally injected with hucMSC-CM (50 μL) 4 h after LPS treatment. Mice in the LPS+cm+cc group were intraperitoneally treated with Compound C (15 mg/kg) prior to LPS treatment. Neutrophils in peripheral blood were counted with the automated hematology analyzer 72 h after LPS administration. After that, mice were sacrificed, and the lung tissue pathology was observed using hematoxylin eosin (HE) staining. Besides, the expressions of IL-6, ICAM-1, VCAM-1 and P-AMP-activated protein kinase (P-AMPK) in the lung tissues were analyzed by Western blot and immunohistochemical assay. In vitro, human lung microvascular endothelial cells (HuLEC-5a) were cultured and divided into three groups: control group, LPS group (10 μg/ mL), and LPS + HucMSC-cm group. After 24 h of treatment, the expressions of p-AMPK and AMPK were detected by Western blot, and the expressions of IL-6 and IL-8 were detected by real-time fluorescence quantitative PCR. Oneway analysis of variance was used to compare the mean values of normally distributed measurement data between groups. Comparisons between two groups were performed using the Tukey’s multiple comparison test. Results:Compared with the sham group, the LPS group showed lungs with congestion and swelling, thickened pulmonary septum, and inflammatory cell infiltration. Moreover, in the LPS group, the protein expressions of IL-6 ( P=0.003), ICAM-1 ( P<0.001) and VCAM-1 ( P=0.001) were increased significantly, while the expression of p-AMPK was decreased ( P=0.013), accompanied by an increase in the proportion of neutrophils in peripheral blood ( P<0.001). Compared with the LPS group, the LPS+HucMSC-cm group demonstrated eased congestion, edema and pathological injury of lung tissue, reversed protein expressions of IL-6 ( P=0.003), ICAM-1 ( P=0.002), VCAM-1 ( P=0.006) and P-AMPK ( P=0.002), as well as decreased proportion of neutrophils in peripheral blood ( P<0.005). Compared with the LPS+HucMSC-cm group, the LPS+cm+cc group exhibited more severe lung histopathological injury, significantly increased protein expressions of IL-6, ICAM-1 and VCAM-1 in lung tissues, as well as decreased expression of P-AMPK protein. The results of immunohistochemistry were consistent with those of protein. In vitro experiment, after LPS treatment, the mRNA expressions of IL-6 ( P<0.001) and IL-8 ( P=0.027) were increased and p-AMPK protein expression ( P=0.005) was decreased as compared with the control group. In comparison with the LPS group, the LPS+HucMSC-cm group showed decreased mRNA expression levels of IL-6 ( P=0.003) and IL-8 ( P=0.002), but increased protein level of p-AMPK ( P=0.003). Conclusions:HucMSC-cm has a protective effect against LPS-induced acute lung injury, which is mainly attributed to the inhibited expression of adhesion molecules and inflammatory factors under the activation of AMPK.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 86-92, 2022.
Article in Chinese | WPRIM | ID: wpr-940390

ABSTRACT

ObjectiveTo observe the effect of Xianlian Jiedu prescription (XLJDP) on the proliferation, apoptosis, and migration of cancer-relative endothelial (CRE) cells, and to decipher the mechanism of XLJDP in regulating angiopoietin2 (Ang2) to maintain CRE cell homeostasis and inhibit tumor neovascularization. MethodHuman umbilical vein endothelial cell line (HUVEC-c) was induced into CRE cells in the human colorectal cancer HCT-116 cell-conditioned medium. The CRE cells were assigned into the blank group, conditioned medium group, and XLJDP groups (1, 2, 3 g·L-1) and treated for 48 h. The proliferation of CRE cells was detected by methyl thiazolyl tetrazolium (MTT) colorimetry. The morphological changes of CRE cells were observed via an inverted microscope. The apoptosis rate was detected by flow cytometry. Wound healing test and Transwell migration assay were employed to detect the 2D/3D migration ability of CRE cells. The protein levels of vimentin, N-cadherin, matrix metalloproteinase-9 (MMP-9), and Ang2 in CRE cells were measured by Western blot. ResultThe MTT results showed that the cell viability was higher in the conditioned medium group than in the blank group (P<0.05). Compared with the conditioned medium group, XLJDP decreased the cell proliferation rate (P<0.01) and changed the cell morphology. The total apoptosis rates of all the XLJDP groups were higher than that of the conditioned medium group (P<0.01). The 2D and 3D migration abilities of the conditioned medium group were higher than those of the blank group (P<0.05, P<0.01). Compared with the conditioned medium group, XLJDP at all the concentrations weakened the 2D migration ability (P<0.01) and medium- and high-concentration XLJDP weakened the 3D migration ability (P<0.01). The protein levels of N-cadherin, Vimentin, MMP-9, and Ang2 were up-regulated in the conditioned medium group compared with those in the blank group (P<0.05, P<0.01). Compared with the conditioned medium group, XLJDP at all the concentrations down-regulated the protein level of Ang2 (P<0.05, P<0.01), and medium- and high-concentration XLJDP down-regulated those of N-cadherin, vimentin, and MMP-9 protein (P<0.01). ConclusionXLJDP may inhibit the proliferation, migration, differentiation, and apoptosis of CRE cells by down-regulating the expression of Ang2, inhibiting tumor neovascularization, and maintaining the cell homeostasis.

9.
Acta Pharmaceutica Sinica B ; (6): 787-800, 2022.
Article in English | WPRIM | ID: wpr-929327

ABSTRACT

The bile acid-responsive G-protein-coupled receptor TGR5 is expressed in monocytes and macrophages, and plays a critical role in regulating inflammatory response. Our previous work has shown its role in promoting the progression of non-small cell lung cancer (NSCLC), yet the mechanism remains unclear. Here, using Tgr5-knockout mice, we show that TGR5 is required for M2 polarization of tumor-associated macrophages (TAMs) and suppresses antitumor immunity in NSCLC via involving TAMs-mediated CD8+ T cell suppression. Mechanistically, we demonstrate that TGR5 promotes TAMs into protumorigenic M2-like phenotypes via activating cAMP-STAT3/STAT6 signaling. Induction of cAMP production restores M2-like phenotypes in TGR5-deficient macrophages. In NSCLC tissues from human patients, the expression of TGR5 is associated with the infiltration of TAMs. The co-expression of TGR5 and high TAMs infiltration are associated with the prognosis and overall survival of NSCLC patients. Together, this study provides molecular mechanisms for the protumor function of TGR5 in NSCLC, highlighting its potential as a target for TAMs-centric immunotherapy in NSCLC.

10.
Chinese Journal of Tissue Engineering Research ; (53): 56-60, 2021.
Article in Chinese | WPRIM | ID: wpr-847222

ABSTRACT

BACKGROUND: Studies have shown that mesenchymal stem cells can participate in the repair of wound injury caused by diabetes, but the high glucose environment obviously inhibits the function of mesenchymal stem cells and the effect of transplantation. OBJECTIVE: To observe the effect of conditioned medium of bone marrow mesenchymal stem cells intervened by rosiglitazone on the proliferation and migration of endothelial progenitor cells in high glucose environment. METHODS: (1) The bone marrow mesenchymal stem cells from the logarithmic growth period were cultured in three groups. The normal group was cultured with alpha-MEM medium containing 10% fetal bovine serum. The high glucose group was cultured with alpha-MEM medium containing 10% fetal bovine serum and 25 mmol/L glucose. The rosiglitazone group was cultured with alpha-MEM medium containing 10% fetal bovine serum, 25 mmol/L glucose and 10 μmol/L rosiglitazone. After 48 hours of culture, the culture supernatant was extracted as conditioned medium. The levels of vascular endothelial growth factor and matrix cell derived factor 1 in conditioned medium were detected by ELISA. (2) The endothelial progenitor cells from the logarithmic growth period were divided into three groups. The control group was cultured with the EGM-2 MV medium containing 10% fetal bovine serum. The model group was cultured with the EGM-2 MV medium containing 10% fetal bovine serum, 30 mmol/L glucose and conditioned medium of the high glucose group. The experimental group was cultured with EGM-2 MV medium containing 10% fetal bovine serum, 30 mmol/L glucose and conditioned medium of the rosiglitazone group. After 24 hours of culture, the ability of cell proliferation and migration was detected. RESULTS AND CONCLUSION: (1) The levels of vascular endothelial growth factor and matrix cell derived factor 1 in the conditioned medium of high glucose group were significantly lower than that of the normal group (P < 0.05). The levels of vascular endothelial growth factor and matrix cell derived factor 1 in the conditioned medium of the rosiglitazone group were significantly higher than in the high glucose group (P < 0.05). (2) The proliferation and migration ability of endothelial progenitor cells in the model group was lower than that in the control group (P < 0.05). The proliferation and migration ability of endothelial progenitor cells in the experimental group was higher than that in the model group (P < 0.05). (3) It is suggested that the conditioned medium of rosiglitazone intervened bone marrow mesenchymal stem cells can promote the proliferation and migration of endothelial progenitor cells.

11.
Chinese Journal of Tissue Engineering Research ; (53): 2097-2102, 2021.
Article in Chinese | WPRIM | ID: wpr-847097

ABSTRACT

BACKGROUND: Adipose stem cell-free liquid extracts include adipose stem cell conditioned medium, adipose stem cell exosomes, because they do not contain cells and have the advantages of being easy to carry, store, and transport, which has gradually become one of the most promising therapies currently. OBJECTIVE: To review the research progress in the therapeutic application of adipose stem cell-free liquid extracts. METHODS: The first author searched the CNKI, Wanfang and PubMed databases for relevant articles published from January 2005 to March 2020. The key words were “adipose stem cell, stromal cell and conditioned medium”, “adipose stem cell, stromal cell and exosomes” in Chinese, and “adipose stem cell, adipose stromal cell and conditioned medium” and “adipose stem cell, adipose stromal cell and exosomes” in English. Repetitive articles and those lacking of originality were eliminated. Totally 123 articles were searched initially, and 62 articles were included in result analysis. RESULTS AND CONCLUSION: Adipose stem cell-free liquid extracts have broad therapeutic potential in a variety of disease areas, such as anti-aging, wound healing, scar recovery, and nerve regeneration. However, the specific mechanism of action is not very clear, and further research is needed.

12.
Chinese Journal of Tissue Engineering Research ; (53): 2005-2010, 2021.
Article in Chinese | WPRIM | ID: wpr-847095

ABSTRACT

BACKGROUND: The conditioned medium rich in bioactive substances can maintain the stability of proliferation and biological characteristics of stem cells. Whether the conditioned medium of human periodontal stem cells derived from healthy tissues can affect the proliferation and osteogenesis of human periodontal stem cells derived from inflammatory tissue is significant for periodontal tissue regeneration and reconstruction. OBJECTIVE: To investigate the effect of human periodontal stem cells-conditioned medium derived from healthy tissue on proliferation and osteogenic differentiation of human periodontal stem cells derived from inflammatory tissue. METHODS: HPDLSCs from normal periodontal ligaments of healthy adults were isolated, purified and cultured in vitro. Human periodontal stem cells-conditioned medium was obtained by collecting the supernatants from the serum free medium which was used for the third generation cells grown up to 80% of the bottom of the bottle after 24 hours cultivation. Human periodontal stem cells derived from inflammatory tissue were obtained from pericementum of periodontitis patients, and cultured by using limiting dilution assay. Human periodontal stem cells derived from inflammatory tissue were separately cultured under conditioned medium treatment group (conditioned medium containing 50% human periodontal ligament stem cells + 50% conventional medium) and control group (conventional medium). Protein expression levels of vimentin, Pan Cytokeratin, and stromal cell antigen STRO-1 were identified by immunofluorescence staining. The proliferative activity of cells was analyzed by MTT assay and flow cytometry. After osteogenesis in vitro, alkaline phosphatase activity and the expression levels of three osteogenesis related genes (Runx2, OPN, and OCN) were detected using alkaline phosphatase kit and RT-PCR, respectively in both groups. RESULTS AND CONCLUSION: (1) Both groups of cells were in accordance with the morphological characteristics of adult stem cells, showing long fusiform or polygonal shapes. There was no significant difference in cell morphology between the two groups under inverted phase contrast microscope. (2) The immunofluorescence staining showed that cells in both groups were positive for the specific antibodies of vimentin and STRO-1, but negative for the specific antibody of Pan Cytokeratin. (3) The results of MTT assay showed that after 3, 5 and 7 days, the proliferative activity of conditioned medium treatment group was higher than that of control group (P < 0.01). (4) Cell cycle analysis showed that compared with the control group, the number of cells in G2/M phase and S phase in conditioned medium treatment group increased significantly (P < 0.05). (5) At 5 and 7 days of osteogenic induction in vitro, alkaline phosphatase activity of conditioned medium treatment group was higher than that of control group (P < 0.05). (6) After 21 days of osteogenic induction, the expression levels of osteogenic related genes Runx2, OPN, and OCN in conditioned medium treatment group were significantly higher than those in control group (P < 0.01, P < 0.05). (7) In conclusion, human periodontal stem cells-conditioned medium derived from healthy tissues can enhance the proliferation and osteogenic differentiation of human periodontal stem cells derived from inflammatory tissue.

13.
Article | IMSEAR | ID: sea-209906

ABSTRACT

Stem cell conditioned medium exhibits a huge regenerative potential but low concentration of cytokines, highdevelopment cost, and scalability challenges are major deterrents to product advances. This research studiedimpact on vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) secretions afterpreconditioning human dental pulp stem cells (HDPSCs) with diverse factors, viz., Deferoxamine (250 µM),Epidermal Growth Factor (EGF) (2 ng/ml), Angiotensin I (5mM) and Insulin Transferrin Selenium (ITS) (1%),and Niacinamide (5 mM). Additionally, advantage of using “pooled population” of HDPSCs was ascertained.HDPSCs were incubated under standard culture conditions using optimized growth media. On reaching 80%–85% confluency, media was discarded and fresh serum free media with preconditioning factors, initially oneat a time and subsequently in combination, was added. Spent media, collected after 48 hours of incubation,was used for enzyme-linked immunosorbent assay testing of selected cytokines. In comparison to control,preconditioning factors, used in isolation showed varied but significant upregulation in the secretion of VEGFbut down regulation of HGF. When used in combination, VEGF secretion increased almost 10 times of controlwith no significant change in HGF level. Results demonstrated importance of choosing right preconditioningfactors and right interplay of preconditioning factors to enhance secretions. This research paves the path todevelop an effective and commercially viable conditioned medium that can be used as “biological active” forpharmaceuticals and for developing “customized” serum free medium enriched with selected cytokines

14.
Chinese Journal of Tissue Engineering Research ; (53): 7-13, 2020.
Article in Chinese | WPRIM | ID: wpr-848046

ABSTRACT

BACKGROUND: Adipose-derived mesenchymal stem cells (ADSCs) secrete various cytokines and growth factors required for bone remodeling, which are considered to be excellent candidate cells for bone regeneration. Bone morphogenetic protein 2 (BMP2) and ADSCs have a synergistic effect on bone regeneration and can significantly enhance the osteogenic differentiation of ADSCs. OBJECTIVE: To explore the efficacy of conditioned medium of ADSCs combined with BMP2 on postmenopausal osteoporosis in a rat model. METHODS: Healthy and female Sprague-Dawley rats aged 8-10 months (n=75) were obtained from the Animal Center of Shenyang Medical College. Ovariectomy was performed to induce postmenopausal osteoporosis in 60 rats, and the remaining 15 rats underwent surgeries without removal of the ovaries (sham group). Ovariectomized rats were randomized into four groups: Osteoporosis group, conditioned medium group, BMP2 group, and conditioned medium+BMP2 group, followed by injection of DMEM medium, ADSCs conditioned medium, BMP2, and ADSCs conditioned medium+BMP2 via the tail vein, respectively. After 12 weeks of treatment, femurs and serum samples of each group were taken. The number and structure of trabecular bone and trabecular spacing were detected histologically. Serum P1NP, ALP, TRAP, OPG, RANKL levels were detected by ELISA. Western blot and real-time PCR were used to detect RANKL and OPG at protein and mRNA levels. Cytokine chip analysis of cytokines in ADSCs conditioned medium was performed. RESULTS AND CONCLUSION: Compared with the sham group, increased trabecular spacing, fewer trabeculae and marked trabecular disconnection were observed in osteoporosis rats. The trabeculae in conditioned medium+BMP2 group appeared to be more complete and continuous with less widened spacing compared with the osteoporosis, conditioned medium and BMP2 groups. Serum levels of P1NP and ALP were dramatically higher, while TRAP level group was decreased significantly in the conditioned medium+BMP2 group compared with the other groups (both P < 0.05). In the conditioned medium+BMP2 group, RANKL/OPG ratio was reduced significantly compared with the other groups (P < 0.01), further promoting bone formation. ADSCs conditioned medium contained a variety of cytokines that were essential for bone formation and remodeling, including bone morphogenetic proteins 4 and 7, leukemia inhibitory factor, brain-derived neurotrophic factor, osteoprotegerin, and insulin-like growth factor 1. These results demonstrate that ADSCs conditioned medium combined with BMP2 can mitigate osteoporosis induced by ovariectomy and it may be an attractive strategy to treat postmenopausal osteoporosis.

15.
Article | IMSEAR | ID: sea-187998

ABSTRACT

Background: The therapeutic value of mesenchymal stem cells (MSCs) in tissue engineering and regenerative medicine is attributable in part to paracrine pathways triggered by several secreted factors secreted into culture media. The secreted factor here is known as the conditioned medium (CM) or secretome. Objectives: This review is aimed to investigate and summarise the in-vitro, pre-clinical in-vivo studies regarding the role of CM-MSC in bone regeneration from 2007 until 2018 Data Sources: A systematic literature search on PubMed, MEDLINE, OVID, Scopus and Cochrane library was carried out by using search terms: Secretome, conditioned medium, mesenchymal stem cell, bone healing, osteogenic, osteogenesis. Methods: A total of 611 articles were reviewed. Ten articles were identified as relevant for this systematic literature review. Results: Three tables of studies were constructed for in vitro studies and in-vivo studies. Conclusion: All of the included in-vitro studies and in-vivo studies have shown a promoting effect of bone regeneration at various stages. Although there are no clinical studies regarding the use of CM-MSC in the human bone regeneration that have been conducted, transplantation of secretome has shown a promising result in the acceleration of bone healing process.

16.
Biomolecules & Therapeutics ; : 63-70, 2019.
Article in English | WPRIM | ID: wpr-719640

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate NF-κB signaling. Moreover, expression of PD-L1 and CD80 on PD-1+ MDSCs was higher than on PD-1− MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in PD-1+ MDSCs than in PD-1− MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that PD-1+ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.


Subject(s)
Animals , Humans , Mice , Antigen-Presenting Cells , Autoimmune Diseases , Bone Marrow , Bone Marrow Cells , Breast , Recurrence , Spleen , T-Lymphocytes , Tumor Microenvironment
17.
Acta Anatomica Sinica ; (6): 527-532, 2019.
Article in Chinese | WPRIM | ID: wpr-844646

ABSTRACT

Objective: To investigate the feasibility of inducing human dental pulp stem cells (DPSCs) to differentiate into corneal epithelial-like cells by conditioned medium (CM). Methods: DPSCs were isolated and identified by flow cytometry. The effect of basal medium (BM) and different CM on the proliferation activity of DPSCs was detected by cell counting kit-8(CCK-8) assay. DPSCs were induced by 30%CM, 60%CM, 90%CM. The cells cultured in BM were negative control group. Corneal epithelial cells markers cytokeratin 3 (CK3) and cytokeratin 12 (CK12) were detected by immunofluorescence assay. Results: There was no significant difference in the proliferation activity of DPSCs between BM group and different CM group (P > 0. 05). Cells in the 30%, 60%, 90% CM group did not express CK3 after 3 days induction, cells in the 60%and the 90%CM group began to express CK12; CK3 and CK12 were expressed in the 30%, 60%, 90%CM group after 7 days; At the 11th and 14th day, cells continued to express CK3 and CK12 in the 30%, 60%, and 90% CM groups. No expression of CK3 and CK12 was observed in the BM group. Conclusion: DPSCs are capable of differentiating into corneal epithelial-like cells under the induction of CM.

18.
Tissue Engineering and Regenerative Medicine ; (6): 141-150, 2019.
Article in English | WPRIM | ID: wpr-761896

ABSTRACT

BACKGROUND: Recent studies have shown that induced pluripotent stem cells (iPSCs) could be differentiated into mesenchymal stem cells (MSCs) with notable advantages over iPSCs per se. In order to promote the application of iPSC-MSCs for osteoregenerative medicine, the present study aimed to assess the ability of murine iPSC-MSCs to differentiate into osteoblast phenotype. METHODS: Osteogenic differentiation medium, blending mouse osteoblast-conditioned medium (CM) with basic medium (BM) at ratio 3:7, 5:5 and 7:3, were administered to iPSC-MSCs, respectively. After 14 days, differentiation was evaluated by lineage-specific morphology, histological stain, quantitative reverse transcription-polymerase chain reaction and immunostaining. RESULTS: The osteogenesis-related genes, alp, runx2, col1 and ocn expressions suggest that culture medium consisting of CM:BM at the ratio of 3:7 enhanced the osteogenic differentiation more than other concentrations that were tested. In addition, the alkaline phosphatase activity and osteogenic marker Runx2 expression demonstrate that the combination of CM and BM significantly enhanced the osteogenic differentiation of iPSC-MSCs. CONCLUSION: In summary, this study has shown that osteoblast-derived CM can dramatically enhance osteogenic differentiation of iPSC-MSCs toward osteoblasts. Results from this work will contribute to optimize the osteogenic induction conditions of iPSC-MSCs and will assist in the potential application of iPSC-MSCs for bone tissue engineering.


Subject(s)
Animals , Mice , Alkaline Phosphatase , Bone and Bones , Culture Media, Conditioned , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Osteoblasts , Phenotype
19.
Malaysian Journal of Medical Sciences ; : 35-45, 2019.
Article in English | WPRIM | ID: wpr-780824

ABSTRACT

@#Background: Glioblastoma multiforme (GBM) is the most malignant primary brain tumour and there is no definite cure. It has been suggested that there are significant interactions among mesenchymal stem cells (MSCs), their released factors and tumour cells that ultimately determine GBM’s growth pattern. This study aims to analyse the expression of molecules involved in GBM cell apoptotic pathways following treatment with the MSC secretome. Methods: A conditioned medium of umbilical cord-derived MSCs (UCMSC-CM) was generated by culturing the cells on serum-free αMEM for 24 h. Following this, human GBM T98G cells were treated with UCMSC-CM for 24 h. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was then performed to measure the mRNA expression of survivin, caspase-9, TNF-related apoptosis-inducing ligand (TRAIL), DR4 and DcR1. Results: mRNA expression of caspase-9 in CM-treated T98G cells increased 1.6-fold (P = 0.017), whereas mRNA expression of survivin increased 3.5-fold (P = 0.002). On the other hand, TRAIL protein expression was upregulated (1.2-fold), whereas mRNA expression was downregulated (0.4-fold), in CM-treated cells. Moreover, there was an increase in the mRNA expression of both DR4 (3.5-fold) and DcR1 (1,368.5-fold) in CM-treated cells. Conclusion: The UCMSC-CM was able to regulate the expression of molecules involved in GBM cell apoptotic pathways. However, the expression of anti-apoptotic molecules was more upregulated than that of pro-apoptotic molecules.

20.
International Journal of Stem Cells ; : 388-399, 2019.
Article in English | WPRIM | ID: wpr-785835

ABSTRACT

BACKGROUND AND OBJECTIVES: Oxidative stress (OS) is known to be an important factor of male infertility. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to have immune-modulatory and anti-oxidant effects through their secretions, hence raising the idea of their potential benefit to improve sperm parameters. This study aims at investigating the effect of AD-MSCs conditioned medium (CM) on human sperm parameters in the presence and absence of H2O2-induced OS.METHODS AND RESULTS: Sperm samples were collected from 30 healthy men and divided into two groups: non-stressed and H2O2-stressed. Isolated AD-MSCs from healthy donors undergoing liposuction were cultured and CM was collected at 24, 48 and 72 h. Both sperm groups were cultured with CM and a time course was performed followed by an evaluation of sperm parameters. The incubation of non-stressed and stressed sperm samples with AD-MSCs-CM for 24 h was found to have the optimum impact on sperm vacuolization, DNA fragmentation and OS levels in comparison to other incubation timings, while preserving motility, viability and morphology of cells. Incubation with CM improved all sperm parameters except morphology in comparison to the non-treated group, with the best effect noted with CM collected at 24 h rather than 48 or 72 h for sperm vacuolization and DNA fragmentation. When compared to fresh semen parameters (T0), samples cultured with CM 24 h showed a significant decrease in sperm vacuolization and DNA fragmentation while keeping other parameters stable.CONCLUSIONS: AD-MSCSs-CM improves sperm quality, and hence can be used in treating infertility and subsequently enhancing IVF outcomes.


Subject(s)
Humans , Male , Antioxidants , Culture Media, Conditioned , DNA Fragmentation , DNA , In Vitro Techniques , Infertility , Infertility, Male , Lipectomy , Mesenchymal Stem Cells , Oxidative Stress , Semen , Spermatozoa , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL